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Several generalizations of theorems of the types originally stated by Helmholtz 
concerning the dissipation of energy in slow viscous flow have been given recently 
by Keller, Rubenfeld & Molyneux (1967). These generalizations included cases in 
which the fluid contains one or more solid bodies and drops of another liquid 
assuming the drops do not change shape. Some further extensions are given 
herein which allow for drops which may be deformed by the flow and include the 
effect of surface tension. The admissible boundary conditions have also been 
extended and particular theorems applicable to infinite domains, spatially 
periodic flows and to flows in infinite cylindrical pipes are derived. Uniqueness 
theorems are also proved. 

1. Introduction 
The history of extremum principles for slow viscous flow (Stokes flow) is 

given briefly by Keller et al. (1967) and they prove several theorems which 
include and extend previous results. These theorems establish upper and lower 
bounds for the excess dissipation rate which is defined to be the rate of energy 
dissipation in the fluid minus twice the power of the external body forces and 
given surface tractions. One of the principal generalizations introduced was to 
include suspended solid particles and drops of another liquid whose motion is not 
known in advance. However, the shapes of the drops were assumed to be constant 
during the motion. 

In  the present paper it is shown that if minus twice the power delivered by 
surface tension is included in the definition of the excess dissipation rate, that 
minimum and maximum principles can be derived for suspensions containing 
deformable drops as well as rigid particles. 

The motivation for the present paper stems from a study of capillary blood 
flow in which the red blood cells may be represented by a line of flexible particles 
suspended in viscous flow in a tube. Spatially periodic flows are of interest for 
this application and the extremum principles have also been appropriately 
specialized for this purpose. Simplifications in the specification of the problem 
are possible, namely, it is sufficient to specify certain integral quantities such as 
the discharge rather than pointwise data such as velocity on the boundaries of the 
typical periodic cell. These results can be applied to uniform flows in cylindrical 
pipes also. 
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Specific theorems are proved for infinite domains assuming body forces are 
conservative. It is shown that the rate of decrease of the velocity at  infinity can 
be predicted rather than assumed and this allows a more general statement of 
uniqueness and extremum principles. 

All of the theorems proved below, like those already in the literature, consider 
that the configurations of the droplets and particles are known at the instant 
that the fluid motion is to be found. 

2. Statement of the problem 
Consider a domain V which contains a viscous fluid in which there are NL 

liquid drops or bubbles and NK rigid, solid particles. The boundary S of V is 
assumed not to intersect any of the suspended drops or particles. The boundary 
conditions in the sense of prescribed velocity and traction components are 
assumed to be specified only on S which will be subdivided into S,, S,, X,, S, 
according to the particular components specified. 

Let the domain V be subdivided into VTo occupied by the suspending fluid, 
Vg)  (Z = 1, ..., NL) occupied by the fluid drops, and V g )  (k = 1, ..., NK)  occupied 
by the solid particles. Let So, AS$) and Sg)  denote the surfaces of V,, Vg) and V g )  
respectively. Then So is the sum of S, S'j? (I = 1, . . ., NL) and Sg) ( k  = 1, . . ., NK).  
Let n denote the normal to So directed outward from V,. 

Each of the fluids in V, and V'f (I = 1, . . . , N,) is assumed to be a uniform, 
incompressible, Newtonian fluid but the viscosity p ( x )  may be different in each of 
these domains. Let a@) (Z = 1, . . . , NL) denote the surface tension in !.Sg); cr@) may 
be different for each Sg). 

It is convenient to define a single velocity field u(x)  for the entire domain V .  
The motions of the drops and solid particles are not known in advance but are to 
be found as part of the solution. The requirement of zero relative velocity of the 
fluids and solids on the two sides of each Sg' and Sg) is met by stipulating that 
u(x) be continuous in V .  Within each solid particle, the velocity u(x) is defined to 
be that of the rigid body motion consistent with the fluid velocity on its boundary. 

Let f(x) denote the body force per unit volume defined throughout V .  Let 
p ( x )  and rij(x) denote the pressure and stress tensor which are defined only in the 
fluid domains V, and Vg) (I = 1, . . . , NL). The pressure and stress are required to be 
continuous except across the surfaces Sg) of the drops where the difference of 
the value outside minus the value inside the drop will be denoted by Ap and 
ArLj respectively. 

Let j(z), t(z), m(x) be three unit vectors which are specified at each point of 
S as part of the boundary conditions of the problem. The j, t, m must be mutually 
orthogonal, but may be otherwise arbitrarily oriented a t  each point. 

The problem is to find u(x) in V satisfying the following equations and 
boundary conditions : 

ui,i = 0, x in V ;  (2.1) 

rii , j+fi  = 0, x in V, and T'x) (I = 1, ..., N,); ( 2 . 2 )  

ui = g,(x), x on Sl; (2.3) 
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ui.ji= h(x), u,ti = bfx), x on S,; 

qjnjmi=P(x), x on S,; 

u& = h ( x ) ,  x on S3; 

rijnjli = a(x),  rijnjrnsi = P(x), x on S3; 

7Ljnj= y,(x), x on X4; 

, x on Sg’ (I = 1, ..., N,); 

Arijnj - Arqlnnqn,ni = 0, x on Sg’ ( 1  = 1, . . . , NL) ; 

0 0 

7.. = -pa..+ 2peij, x in T’, and V:) (I = 1 ,  ..., NI,); 

egg= ~ ( U ~ , ~ + U $ ,  i ) ,  x in V ;  

e i j  = 0, x in V g )  ( I c  = 1, ..., N K ) ;  

13 13 
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( 2 . 4 ~ )  

(2.4b) 

(2.5a) 

(2.5b) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where eijk is the alternating tensor and Sijis the Kronecker delta. R, and R, denote 
the two principal radii of curvature of Si’ reckoned positive when they extend 
into the drop. The functions CL, p ,  y, g, h, b are given as part of the boundary 
conditions. 

Equations (2.1) and (2.2) are the equations of continuity and motion for the 
Stokes flow in the fluid domains. 

The boundary conditions (2.3), (2.4a),  (2.5a) and (2.6) specify 3, 2, 1 or 0 
components of the velocity on S,, S,, X,, S,  respectively. In each case, a sufficient 
number of traction components are also specified by (2.4b), (2.5b) and (2.6) to 
make the solution unique, as will be shown in the derivations below. 

Equation (2.7) equates the difference of the normal components of the tractions 
on the two sides of S’J? t o  the effect of surface tension 8. Equation (2.8) 
states that the tangential component of the surface traction is continuous 
across Sg. 

The equations of motion of the solid particles are expressed by (2.9) and 
(2.10). 

Equations (2.11) and (2.12) define the stress tensor rij and eij for a Newtonian 
fluid and (2.13) ensures that the motion within Xg) is that of a rigid body. 

Only solutions u(x)  which are continuous throughout V will be considered; 
derivatives of u may be discontinuous on SE) ( I  = 1, , . . , N,) and on Sg’ (k = 1, 

The domain V is considered to be finite until $ 6  where infinite domains are 
..., Ng).  

specifically considered. Spatially periodic flows are treated in $7. 
34 F L M  42 
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3. A minimum principle 

It is defined bv 
Let the rate of dissipation of energy into heat by viscosity in V be denoted D[u] .  

The excess dissipation rate D J u ]  is defined to be the rate of viscous energy 
dissipation minus twice the power of the external body forces, the given surface 
traction components and the surface tensions : 

where A0 is the time rate of change of the area A(') of Sg) (1 = 1, ..., NL). The 
product ( - dJA(0) is the rate at  which surface tension does work on the adjacent 
fluids and is also the rate at which the surface energy dOA0 decreases. At any 
time, is given by (cf. Landau & Lifshitz 1959) 

The minus sign in (3.3) is due to the fact that n is the normal taken outward 
from V, which is inward to VE.  

THEOREM 1. A minimum principle. Let u(x)  be a continuous solution of a 
Stokes flow problem satisfying (2.1)-(2.13). Let ii(x) be any continuous velocity 
field which is  piecewise continuously differentiable and satisfies (2.1), (2.3), (2.4a), 

(3.4) 
(2.5a), and (2.13). Then 

D,[Ul D,[iil 

The equality holds only if 5 = u or fi = u + u0 where u0 is a rigid body motion. 
(Note that the configurations of the droplets and solid particles are identical 

for both flows u and ii at the instant considered.) 
Proof. Let ii = u+ii. Then from (3.1) 

D[ii] = D [ u  + 51 = D[u]  + D[5]  + 4peii[u]e,[ii]dV 

1=1 y ( l )  

Lo 
+ 1 4peij[u]eii[iild~. (3.5) 

In  (3.5), 2peij[u] may be replaced by T,~[u]  because the trace of eij[ii] is zero. Also, 
eij[ii] may be replaced by iii,j because qj[u] is symmetric. Then using (2.2), 
(3.5) becomes 

L 

D[ii] = D[U]+D[G]+ [ I. ( 2 ( a j ~ i 7 i j [ u ] ) + 2 f ; ~ i ) d V  
J 1'3 
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Now replacing u in (3 .2)  by ii and using (3 .6 )  and Gauss's theorem, yields (3 .7 ) ,  
below. In  applying Gauss's theorem the surfaces on which the derivatives of ii 
are discontinuous give no net contributions. The contributions from the two 
sides cancel because ii and ii are continuous. Thus 

- 2 &(Ui + Ciii) d v - 2 (Ui + Ci) m,/?dX sy IS" 
n n 

where A0 is given by (3 .3 )  and J ( 0  is the rate of change of A0 under the velocity ii. 
Since (3 .3 )  is linear in u, J ( 0  is given by (3 .3)  with u replaced by ii. In  (3 .7 )  the 
superscripts in 7::) [u] and 4) [u] have been added to denote the stress tensors on 
the two sides of the surfaces Sg) facing V, and Vg) respectively. The difference 
(7:;) [u]-T$) [u]) is A7i, as used in (2 .7)  and (2 .8 ) .  

Since u and 6 both satisfy (2 .3 ) ,  ( 2 . 4 ~ )  and 2 .5u) ,  the components of ii corre- 
sponding to the specified components of u on S are zero. Further, ~ ~ ~ [ u ]  satisfies 
(2 .4b ) ,  (2 .5b )  and (2 .6) .  As a result, the surface integrals in (3 .7)  over S,, X,, S, 
and S, involving ii all cancel. The surviving terms of (3 .7 )  may be written 

The integrals over F'g) and Sg)  in (3 .8 )  are the rate of work done on the solid 
particles by the body forces fj and surface tractions ~ ~ ~ [ u ]  under the motion a. 
Since ii is a rigid body motion within each V g )  it  has the form 

Gi = .ii'zk)+E. zzm (1.. 2 bk k,,)%, x in V P ,  (3 .9 )  

where f i i c k )  is a constant vector and the angular velocity (+qjkGk,j )  which appears 
in (3 .9 )  is also constant within Vg).  Using (3 .9 ) ,  (2 .9 )  and (2 .10)  it follows that 
the sum of the integrals over V g )  and Sg) is zero in (3 .8 ) .  

The surface integrals over Sg) and the surface tension terms in (3 .8 )  may be 
rewritten using ( 3 . 3 ) ,  (2 .7 )  and (2 .8 )  as 

34-2 
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where GiArijnj has been replaced by GiniAr,,n,n, because the tangential 
component of Arijnjis zero by (2.8). The last integrand in (3.10) is zero by (2.7). 

(3.11) 
Hence (3.8) becomes 

Since D[B] is never negative and is zero only if B = 0 or if B is a rigid body motion, 
theorem 1 follows. 

If the boundary conditions are such that no rigid body motion is possible satis- 
fying (2.3), (2.4a)and (2.5a) whenthegivenfunctionsg, h, b arereplaced byzeros, 
then B cannot be a rigid body motion. In  this case D,[ii] = DJu] only if ii = u. 
This is the case, for example, if S, contains at  least three non-colinear points. 

D,[O] = DJU] +D[B]. 

4. A maximum principle 
A maximum principle for the Stokes flow problem stated in 3 2 can be obtained 

in terms of a functional H[rij] of the stress tensor rij. This functional will be 
called the excess power. It is defined as twice the power delivered by surface 
tractions on S acting through the given velocity components g, b,  h minus the 
dissipation expressed in terms of the stress: 

When rijis the stress tensor corresponding to a solution u of (2.1)-(2.13)) then 

H[Tij] = D,[u]. (4.2) 

To prove (4.2)) consider first that for a solution rij[u], the volume integrals over 
V, and 72) in (4.1) become equal to those in (3.1) and add up to D[u]. Next, by use 
of the boundary conditions (2.3)-(2.6) the surface integrals over Sl) 8, and 8, in 
(4.1) may be written: 

(4.3) 

n n n 

(hjirijnj+ btirijnj)dS = uirijn,dS- J uimipdS, J s, J s2 S, 
(4.4) 

Using (4.3)-(4.5) in (4.1) and adding and subtracting twice the integral of 
uirijni over S, gives 
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The first integral in (4.6) is the rate at which surface tractions on S do work on the 
fluid in V .  This integral may be evaluated by expressing conservation of energy 
in the form 

LVL 

u , ~ ~ ~ n ~ d ~ +  f,u,dV = D[u] + c c+)A(l). (4.7) 
ss sv 1=1 

Equation (4.7) is not an independent postulate here since it may be shown to 
follow from (2.1) to (2.13). Using (4.7) in (4.6) to eliminate the integral of ~ ~ 7 ~ ~ n ~  
over S gives H[rij] in a form which is identical to (3.2) so (4.2) is proved. 

THEOREM 2 .  A maximum principle. Let u(x) be a continuous solution of a 
Stokes $ow problem satisfying (2.1)-(2.13). Let Tij be any stress tensor defined in V, 
and VF which is piecewise continuous and piecewise continuously differentiable and 
satisjies (2.2), (2 .4b ) ,  (2.5b), (2.6), (2.7), (2.8), (2.9) and (2.10); on surfaces of 
discontinuity of;ijthe traction n;Tij  is required to be continuous where n; is the normal 
to the surface of discontinuity of TLj (other than the surfaces S? of the drops). Then 

DJUI 2 q j 1 .  (4-8) 

The equality in (4.8) holds only if Tij = rijor Tij = ~ ~ ~ + p ~ c Y ~ ~ w h e r e p ,  is a constant. 
Proof. Let ;iij = rij + Ti,, where rij is the stress tensor corresponding to the solution 

u. In (4.8), H[?&] is given by (4.1) with rijreplaced by Tij: 
r 

Thgjntegral over V, in (4.9) is 

(4.9) 

(4.10) 

An expansion similar to (4.10) can be written for the integrals over V7(rf) in (4.9).  
Using these expansions in (4.9) and comparing to (4.1) gives 

H[Tij] = H[Tij] - ( - T i j  - +TkkC&)ZdV 
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n n 

+ 2J  gLTijnjdS+ 2J (hjifiinj+ btiTiini)dS 
.TI s* 

(4 .11)  

In  (4.11), (2.11) has been used to replace T~~ in terms of eii .  The integral over V, 
containing eij in (4.1 1) may be written 

n n 

In  deriving (4.12), account is taken of the facts that uiis an incompressible flow 
and that aj(Tij) = 0, since both rijand ?&satisfy (2.2). The surfaces of discontinuity 
of TLjwould also enter in (4.12) but since Tijn; and rip; are both continuous across 
such surfaces, the contributions over the two sides of these surfaces cancel. 

A transformation similar to (4.12) yields 

v,z,eii(Tij- $Tkk4.i)dV = - uiTijnidS, (4.13) 

where njis again the normal outward from V,. The surface So in (4.12) is the sum of 
S,, S,, S,, X,, 8%) and Sg) .  When (4.12) and (4.13) are substituted into (4.11), all 
the surface integrals, except those contained in H [ q j ] ,  are found to cancel leaving 

1, SSf) 

(4.14) 

In the reduction of (4.11) to (4.14), the surface integrals over S, which arise are: 

2 I S 2  (hjiT inj + btiTijni) dS - 2 

The sum of the integrals in (4.15) is zero because u satisfies ( 2 . 4 ~ )  and both .rijand 
Tijsatisfy (2.4 b )  so that Ytjnjmi = 0 on S,. The cancellation of integrals over S,, 8, 
and 8, follows similarly. 
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Surface integrals over 8:) arise from (4.12) and (4.13) which combine in (4.11) 

uihTipj dS, (4.16) 

where hTijis the jump of ?ijacross the surfaces 82, The tangential components of 
ripj  and 7ijnj are continuous across 8%) since both satisfy (2.8). The normal 
components of Tijnj and Tiijnj take the same jump, as prescribed by (2.7). Hence 
ATbjnjis zero and (4.16) vanishes. 

On the surfaces Sg) (k = 1, . . . , NK),  the integrals arising from (4.12) are of the 
form r 

to give terms of the form 

Ly 

(4.17) 

Since ujhas the form (3.9) on 8@ and both rijand cj satisfy (2.9) and (2.10), it 
follows after substitution of (3.9) in (4.17) that (4.17) also vanishes. 

In  (4.14) the volume integrals involving Tij are positive unless Tij is zero or of 
the form po8ijwhere po is a constant. Hence 

m i j 1  < m i j 1  (4.18) 

and the equality holds only if Tij = T~~ or if Tij = rij +p0& Theorem 2 follows from 
(4.18) and (4.2). 

The constant po will be zero if no uniform pressure field can satisfy the stress 
conditions ( 2 . 4 b ) ,  (2 .5b)  and (2.6) when the given a, /3, y are replaced by zeros. 
In this case D,[u] = H[Tiij] only if Tij = rij. This is the case, for example, if S, 
contains at  least one point. 

Theorems 1 and 2 contain the minimum and maximum principles given by 
Keller et al. (1967) as special cases in which the drops are of constant shape, S, is 
absent, and j is coincident with n. 

The theorems 1 and 2 also apply to drops or regions of constant volume of one 
or more immiscible fluids in another fluid where the surface tensions are negligible 
(dl) = 0). Then deformation of drops is to be expected in general. 

5. Uniqueness theorem 
THEOREM 3. Thesolutionuof aStokesJowproblemposed by (2.1)-(2.13) isunique 

to within a rigid body motion and the stress rtjis unique within a uniform pressure. 
Proof. Let u(l) and u(2) be two solutions. Then (3.4) holds with u = uC1) and 

ij = d2) and vice versa so the equality in (3.4) would hold. The first part of theorem 
3 then follows from theorem 1. 

Similarly, let 7:;) and 7:;) be the stresses corresponding to u(l) and d2). Then 
(4.18) holds with rij = 7:;’ and Tij = 7:;) and vice versa so the equality would hold 
in (4.18). The second part of theorem 3 follows from theorem 2. 

The arbitrary rigid body motion and the arbitrary uniform pressure implied in 
theorem 3 will be zero under the same conditions as discussed below (3.11) and 
(4.18). 

Theorems 1 , 2  and 3 can be applied to a single homogeneous fluid by deleting 
all references to suspended drops and particles. 
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The theorems also apply if any one, two, or three of the surfaces S,, S,, S,, S, 
are absent. However, every point of S must be a point of one of the surfaces XI, 
S,, S,, S,. The boundary conditions on S which are permitted by (2.3)-(2.6) 
specify just enough components of velocity and traction to make the solution 
unique. This requires that sufficient components of velocity and/or traction be 
specified at  each point of S that if Gi and Tij are differences between two fields 
which both satisfy the boundary conditions on S, then the work rate iiiTijnj is zero 
a t  every point of S. 

6. Infinite domains 
In  the theorems 1 , 2  and 3, the domain V is assumed to be finite. The theorems 

can be applied to infinite domains if it is assumed that the velocity and stress 
fields decay fast enough so that the surface integrals which arise over a sphere at 
infinity vanish. The situation is similar to that of linear elastostatics for exterior 
domains treated by Gurtin & Sternberg (1961). As they point out, the rate a t  
which a solution approaches specified values a t  infinity is an item of information 
which one would legitimately expect to infer from the solution, rather than a 
condition to be imposed on the solution in advance. A uniqueness theorem 
resting on an assumption of the rate of decay at infinity leaves in doubt the 
existence of solutions which approach the specified values a t  infinity less rapidly. 

In the present section, generalizations of theorems 1, 2 and 3 are proved for 
infinite domains without assumptions of the rates of decay of the solutions a t  
infinity. It is also shown that the comparison flows for the various theorems must 
be subject to a specification of the rate of dilation of the internal boundaries. 

The nomenclature of $ 2  will be used also for infinite domains with the under- 
standing that the region V is now an exterior domain bounded internally hy the 
surface S. The surface S is assumed to consist of a finite number of closed surfaces 
which lie within a finite sphere, r = r, where ro is a constant and r is the distance 
from the origin. The surface 8 is again considered in four parts S,, S,, S,, S, 
according to the boundary conditions specified. It is assumed that the number of 
liquid drops, N,, and the number of solid particles, N,, in suspension in V are 
finite and that they also lie within the sphere r = ro. The suspending fluid occupies 
the region V ,  which is the portion of B not occupied by solid particles or liquid 
drops. The surface So of V, consists of XI, S,, S,, S,, Sg) (I = 1, . . ., A;) and 8%) 

The only boundary condition at  infinity which will be considered is that the 
( k  = 1, ..., NK). 

velocity approach a constant vector uniformly a t  infinity, i.e. 

where U, is a given constant vector. Whenever the boundary condition (6.1) is 
imposed, a system of axes translating with velocity may be used so that the 
condition (6.1) is replaced by 

lim ui = 0. (6.2) 
r+ m 

The condition (6.2) will be assumed to apply in all cases below. 
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An additional restriction that will be imposed for infinite domains is that the 
body force within V, be conservative, meaning there exists a single valued 
potential, a(x), such that 

.f, = - ,1, x in V,. (6.3) 

The boundary conditions on the interior boundaries XI, S,, S,, S, are the same 
as  for finite domains detailed by (2 .3 ) - (2 .6 ) .  It will be shown that for an infinite 
domain the total rate of expansion, 8*, must also be specified for uniqueness of the 
solution. Hence the statement of the problem will be augmented by the require- 
ment 

- s \ u f n 3 d S  = P,  (6.4) 

where f3* may be a given function of time in general. 
A complete statement of the problem considered in this section is to find u(x) 

in the infinite domain, V ,  described above satisfying (2 .1) - (2 .13) )  (6 .2 ) ,  (6 .3 )  and 
(6.4). 

The dissipation rate D[u] is again defined by (3 .1 )  with the understanding that 
the integral over V, is now interpreted as the limit 

1 2,u(eij[ul)2dv = lim 1 2p(e i j [u l )2dv .  (6 .5)  
VO p - t m  T7.p 

where V,, is the portion of V, within a sphere r = p. 
The excess dissipation rate D,*[u] for an infinite domain V is defined by 

This definition (6.6) differs from (3 .2 )  in that the rate of work done by body forces 
in V, has been replaced in (6.6) by the rate of change of potential energy due to the 
motion of the boundary 8, of V,. If the domain & were finite, this potential 
energy term would be equal to the integral of fiui over V, by Gauss's theorem, 
(2 .1 )  and (6 .3) .  Then (6.6) would be equivalent to (3 .2 ) .  

The counterpart of theorem 1 for infinite domains requires a representation 
theorem for u, which is developed first below. 

The velocity field U ( X )  is assumed to be continuous and to possess continuous 
derivatives up to second order within each of the domains V,, Vgl ( I  = 1 ,  . .., NL). 
At the boundaries of Vg) and V g )  the velocity u ( x )  is required to be continuous 
but its derivatives may be discontinuous. Then as shown in the appendix, uimust 
be analytic within V, and Vg). 

Equations (2 .2 )  and (2 .11)  may be combined to give the usual equations of 
motion within V, and Vg). 

(6.7) 
1 1 

P P  
~i , j . j  - -I, ,i + - f. = 0. 
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Taking (a/axi)a/ax, of (6.7) and using (6.3) and (2.1) yields 

p,ii /c+Q,ii ,;  = 0. (6.8) 

i.e. v4ui = 0. (6.9) 

Taking (8/t3xl) a j a q  of (6.7) and using (6.8) shows that the velocity is biharmonic, 

A representation of biharmonic functions in an exterior domain has been 
developed by Gurtin & Sternberg (1961). A region $2 is defined as a deleted 
neighbourhood of infinity characterized by 

ro < r < oc), (6.10) 

where ro is a constant. For such a region they prove 

THEOREM 4. Let F(r ,  1Y,q5) be biharmonic in 9, where ( r ,  O,q5) are spherical polar 

(a)  F ( r ,  0, q5) admits the representation 

co-ordinates. Then 

m 

F(r ,  8, #) = C h@)(r, 8,  $) +r2 5 Hck)(r, 8, $), (6.11) 

where hck)(r, 8,q5) and H o ( r ,  8, #) are solid harmonics of degree k and both injnite 
series are uniformly convergent in every closed subregion of 9; 

( b )  F(r ,  0,$) in 9 has partial derivatives of all orders, series representations of 
which may be obtained by performing the corresponding termwise differentiations of 
(6.1 l), the resulting expansions being also uniformly convergent in every closed 
subregion of 9; 

( c )  i f  n i s  aJixed integer, the three statements 

(i) F(r ,  0, $) = 0(rn- l ) ,  (6.12) 

(ii) F(r ,  0, q5) = o(rn),  (6.13) 

(iii) W ( r ,  0,#)  = H(k--2)(r, 8 ,# )  = O for k 3 n (6.14) 

are equivalent and imply 

(iv) F,i(r,8,q5) = O(rn-2). (6.15) 

The orders of magnitude P = O(rn) and F = o(rn) indicate, as usual, that Ir-nFl 
remains bounded uniformly and I r-" F I approaches zero uniformly, respectively, 
asr-+co. 

The following theorem follows from theorem 4. 

THEOREM 5. Suppose ui(x), eJx) ,  ~ ~ ~ ( 2 )  and& in 9 satisfy (2.1), (2.2), (2.11), 
(2.12) and (6.3). Then i f  n i s  ajixed integer 

u, (x)  = o(rn) 
implies 

(i) ui(x) = O(rn-l) ,  

(ii) eij= O(rn-2), 

(iii) p ,i + ,i = O(m-3).  

(6.16) 

(6.17) 

(6.18) 

(6.19) 
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Proqf. Since ui(x) is biharmonic, theorem 4 applies with F replaced by ui. Then 
(6.16), (6.13) and (6.1.2) imply (6.17). The definition (2.12) and (6.15) yield (6.18). 
Substituting (2.12), (2.11) and (6.3) into (2.2) and applying (6.15) again gives 
(6.19). 

THEOREM 6.  A minimum principle for infinite domains. Let V be an exterior 
domain containing NL liquid particles, NK solid particles and internal boundaries S 
within a Jinite sphere F = ro- Let u(x) be a continuous solution of the Stokes f i w  
problem satisfying (2.1)-(2.13), (6.2), (6.3) and (6.4). Let 5 (x)  be any  continuous 
velocity field which i s  piecewise continuously diflerentiable and satisfies (2.1),  
(2.3), (2 .4a) ,  (2.5a),  (2.13), (6.4)and 

Ui = O(r-1) as r -fa. (6.20) 

Then  m u 1  G X P I ,  (6.21) 

where @[u] i s  defined by (6.6). The equality in (6.21) holds only i f i i  = u. 
Proof. Let D = u+5. From (3.1) the forms (3.5) and (3.6) follow as before with 

the understanding that the integrals over V, are interpreted in the sense of (6.5). 
Replacing u by ii in (6.6) and using (3.6) and Gauss’s theorem yields (6.22) 
below. In applying Gauss’s theorem to V, in (3.6), the surface of V, is considered to 
consist of So plus Sp where Sp is the surface of a sphere r = p, p -+ 00. Then 

1VL 
( u i + c i ) y i d S + 2  2 ao(Ao+A@)),  (6.22) 

where the notation is the same as in (3.7). Since u and ii both satisfy (2.3), 
( 2 . 4 ~ )  and ( 2 . 5 ~ )  and 7ij satisfies (2.4b), (2.5b) and (2.6), the surface integrals 
over S;, S,, 8, and S, involving 5 and 7ija11 cancel in (6.22). The surviving terms 
may be written 

- 2Ss. 1=1 

P P 

(6.23) 
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Equation (6.23) is the counterpart of (3.8). The terms in (6.23) which are summed 
over 1 and k pertain to the liquid and solid particles and add up to zero as shown 
below (3.8). Applying Gauss's theorem to the region V, considered bounded by So 
internally and Sf externally and using (6.3) and (2.1) yields 

Substituting (6.24) in (6.23) gives 
r 

Dt[ii] = DZ[U] +D[ii] + 2 Si(Tjj[U] - GjjQ)njdS.  J s p  

Using (2.11) the integral over S, in (6.25) is 

- (p + SZ)CinidS. J sp 

(6.25) 

(6.26) 

Theorem 5 applies to ui with n = 0 by virtue of (6.2). Hence eij[u] = 0(r2) by 
(6.18). Further, Gi = O(r-1) by (6.20) and (6.17). It follows that the first integral 
on the right of (6.26) is zero in the limit p -fa. 

If the integration of (6.19) is considered along a path lying on the sphere S,, 
it follows that on r = p 

(6.27) 

where p* is a constant and P(r, 8, g5) is a function of order O ( T - ~ ) .  Hence 

P + Q = P* +m7 8, $1, 

( p +  Q)CinidX = p* 2.iiinidS+ F ( p ,  8, $)CinidS. (6.28) 

The first integral on the right of (6.28) is zero since u and ii satisfy (6.4) and the 
second integra.1 is zero in the limit p -+ co. Hence (6.28) and (6.26) are zero and 
theorem 6 followsfrom (6.25). In the present case, ui and?ii cannot differ by arigid 
body motion because of the boundary condition a t  infinity so the equality holds 
in (6.21) only if fi = u. 

A maximum principle for infinite domains corresponding to theorem 2 for 
finite domains can be derived if the excess power is redefined for infinite domains 
as follows 

H * [ T ~ ~ ]  = 2 gir.ijnjdSt 2 is2 (hjirijnj+ bti7ijn,j)dS 

Isp Jsp J:, 

JS, 

+ 2/sahjirijn3dS- 28*p* 

(6.29) 
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The difference between (6.29) and (4.1) is that the term -26*p* has been 
added in (6.29). The total rate of expansion, 8*, defined by (6.4) is a part of the 
given kinematic data and the work done by the pressure and body forces at 
infinity represented by p* is therefore included in the excess power. Hz[rij] is 
defined only when p* exists as defined by 

p* = Jim ( p  + 0) = lim ( -  +rkk + Q). (6.30) 

When rij is the stress tensor corresponding to a solution of (2.1)-(2.13), (6.2), 
(6.3) and (6.4), then 

H*[Tij] = D;[u],  (6.31) 

where D,*[u] is given by (6.6). To prove (6.31), we proceed as in proving (4.2). 
In the present case, (4.3), (4.4) and (4.5) hold also. Using (4.3)-(4.5) in (6.29) and 
subtracting twice the integral of uirijnjover S, gives 

r + m  r+m 

n n 

Instead of (4.7), the conservation of energy now takes the form 

where the integrals over Sp and V are interpreted as the limits for p -f co. Using 
(6.3) and Gauss’s theorem these terms may be written 

The two integrals over S, on the right of (6.34) may be replaced by - 6*p* in view 
of (6.27) and the fact that ui = O(r-l) .  Substituting (6.34) into (6.33) and using 
(6.33) to eliminate the integral over S in (6.32) yields H* [rii] in a form identical 
to (6.6) so (6.31) is proved. 

THEOREM 7. A maximum principle for inJinite domains. Let V be an exterior 
domain containing NL liquid particles, NK solid particles and internal boundaries S 
within a Jinite sphere r = r,,. Let u(x) be a continuow solution of the Stokes flow 
problem satisfying (2.1)-(2.13), (6.2), (6.3), (6.4). Let Tijbe any stress tensordefined 
in V, and Vg’ which is piecewise continuous and piecewise continuously differentiable 
and satisJies (2.2), (2 .4b ) ,  (2.5b), (2.6)-(2.10). On surfaces of discontinuity of 
Tij the traction nlTdj is required to be continuous where nl is the normal to the surface 
of the discontinuity qf Tij. Further, the limit, ji*, defined by (6.30) m w t  exist and 

ri j  - &Tkkaij  = O(+) as r -f 00. (6.35) 
- 
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Then D,*[u] >, H*[Tij]. (6.36) 

The equality in (6.36) holds only if Ti* = rij or T~~ = rij+po8<ii where po is a 
constant. 

Proof. Let 5 = rij+Tij, where r i j  is the stress tensor corresponding to the 
solution u. In (6.36), H*[F{J is given by (6.29) with [7ij] replaced by [7,J andp* 
replaced by p*.  The same steps that were used to convert (4.9) to (4.11) yield 

- 

H*[?ij] = H*[7ij]- 

+ 2J hj,TijnjdS- 28*p*, 
8. 

(6.37) 

where p* = p* -p*. The integral over V, containing eijin (6.37) may be rewritten 
by the same steps as in (4.12) to yield 

r r r 

(6.38) 

The integral over S,, in (6.38) may be written 

The first integral on the right of (6.39) is zero in the limit p+co due to (6.2) and 
(6.35); the second integral is equal to - 28*17*. Substituting (6.39) and (6.38) into 
(6.37) and using the same arguments as used in connexion with (4.14) gives 

H*[Q = H*[Tij] - - +iI,I,8,j)2d v 

(6.40) 

The integrals in (6.40) are positive unless Ttj  is zero or of the form p,, Sij where p, 
is a constant throughout V, and Vf ) .  Hence 

H*[Fij] < H * [ 4  (6.41) 

and the equality holds only if Tij = rij or if Tij = ~ ~ ~ + p ~ 8 ~ ~ .  Theorem 7 follows 
from (6.41) and (6.31). The constant p ,  will be zero under the same conditions 
discussed below (4.18). 
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THEOREM 8. Uniqueness theorem for injinite domains. Let V be an exterior 
domain containing NL liquid particles, N' solid particles and internal boundaries S 
within a Jinite sphere r = ro. Then the solution u of a Stokes Jlow problem posed by 
(2.1)-(2.13), (6.2), (6.3) and (6.4) i s  unique and the stress rij is unique to within a 
uniform pressure. 

Proof. The proof follows from theorems 6 and 7 by the same arguments by 
which theorem 3 follows from theorems 1 and 2. 

I n  theorems 6 , 7  and 8 the requirement that 0* be specified as part of the given 
data may be redundant if sufficient velocity components are specified by 
(2.3)-(2.5) to compute the integral in (6.4). In  this case, the separate requirement 
(6.4) may be deleted. 

The physical significance of specifying 0" is illustrated by the following simple 
problem. 

A hollow spherical cavity of radius ro, centred at  the origin, is surrounded by a 
uniform viscous liquid extending to infinity. Suppose the body forces are zero 
and the internal pressure in the cavity is p,,, a given constant. Find the creeping 
motion of the fluid. 

The solution of this problem is 

U, = (p0 - cl) ~ 1 4 ~ 2 ,  (6.42) 

which is not unique because c1 is an arbitrary constant equal to the pressure at 
infinity which was not specified. 

If the problem is augmented by requiring 0* to be a given value, the solution is 

u, = 6*/4.rrr2, (6.43) 

which is unique. The stress tensor is now also unique. In  effect, specifying 0" 
determines the pressure at infinity. 

7. Spatially periodic flows 
Consider an infinite pipe whose cross-section is variable, but periodic with 

respect to a co-ordinate x1 with periodicity A. The walls of the pipe are fixed and 
rigid and may contain additional internal boundaries provided they are also 
fixed and rigid. Let the remaining space be filled with a viscous liquid containing 
liquid drops and solid particles which are also distributed periodically in xl. 
Body forces fi are assumed to be periodic in x1 also. It is assumed that the velocity 
field of any Stokes flow in the pipe under these conditions is periodic in x1 and 
consists of a series of identical cells. 

Each cell has two identical surfaces, say S, and S, in order of increasing xl, 
spaced h apart. S, and 8, need not be plane, but are chosen to extend entirely 
across the flow and not to intersect any liquid drops or solid particles. The 
remaining surface of the cell, say S,, consists entirely of fixed boundaries. Hence 

ui= 0 on X,. (7.1) 
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Let the volume of a typical flow cell be V with boundary S equal to the sum 
of S,, Sb and 8,. Let V contain NL liquid drops and NK rigid, solid particles. Let 
V,, Vg), V g )  be the parts of V occupied by suspending fluid, liquid drops and solid 
particles respectively with surfaces So, Sg) and Sg'. 

The discharge, Q, through the pipe must be the same for all cross-sections, i.e. 

l sundS = Q all x', (7.2) 

where S' is any cross-section of the flow cell and u, is the component of velocity 
normal to  S'. The discharge Q includes suspending fluid, liquid drops and solid 
particles. The general problem considered is to find U(X) in V satisfying (2.1),  
(2.2), (2.7)-(2.13), (7.1) and (7.2) with Q given. 

Substituting (2.11) in (2.2), it may be seen that since fi and ui are periodic, 
p,i is periodic in x1 and ap/as is identical €or corresponding paths on 8, and S,. 
Then by integrating along S, and S, it follows that any difference of pressures at 
corresponding points of S, and Sb is the same constant, say A p ,  for all pairs of 
corresponding points. A mean pressure gradient, p z ,  is defined by 

Pz = APIA. (7.3) 

The dissipation D[u] in V is given by (3.1). The excess dissipation Dk[uJ for 
the present case is defined by 

where A0 is given by (3.3). 

THEOREM 9. A minimum principle. Let u(x) be a continuous solution of a periodic 
StokesJlowproblem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2). Let ii(x) be 
any continuous periodic velocity field which is  piecewise continuously diflerentiable 
and satisjes (2.1), (2.13), (7.1) and (7.2). Then 

DL[U] < D 3 i ] .  (7.5) 

The equality holds only if u = ii. 

Replacing u by ii in (7.4), using (3.6) and Gauss's theorem yields 
Proof. Let ii = u+ii. Then (3.5) and (3.6) apply in the present case also. 

N L  

- 2  fi(U,[+.ii,)dV+2 c dyA(I)+k@)), (7.6) S v  1=1 

where the notation is the same as in (3.7) except that in (7.6) So is the sum of 
S,, S,, S,, Sg) and Sg). The portion of the integral over So in (7.6) associated with 
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Sf) and Sg) combines to nullify the same terms as in (3.7); the portion over Sc 
is zero by (7 .1) .  This leaves only the integrals over S, and 8, which may be written 

n 

The difference of the stress tensors on 8, and 8, represented by 714) - ~ $ 7 )  in (7.7) is 
equal to Apaiiat every point. Further, the integral of G2ni is zero over S, because 
ti and u satisfy (7.2). Hence (7.7) is zero and (7.6) reduces to 

(7.3) D 3 i ]  = DL[U] + D[f i ] .  

Then (7.5) follows from (7.8). 
A maximum principle similar to theorem 2 for spatially periodic flows can be 

derived for suitably restricted comparison stress fields, Tij. The stress deviator of 
Tij is required to be periodic in x1 and the pressure must exhibit a constant 
difference Ap for all pairs of corresponding points on 8, and 8, of the typical cell. 
Thus - 

qi - Q?kk Sij = periodic in xl, (7.9) 

where Aji is a constant and A and B are any pair of corresponding points on 
S, and 8,. 

The excess power H'[rii] is defined for a periodic Stokes flow having a discharge 
Q and any stress field 7ij satisfying (7.10) by 

1 
H ' [ T { ~ ]  = 2QAp - 1 -(qj - 37kk 6$d V . V o 2 P  

(7 .11)  

where V, and Vg) refer to the typical cell of the flow. 

solution u(x) of the periodic Stokes flow problem with discharge Q,  then 

To prove (7.12), we use (4.7) to show that 

When the stress tensor rii and concomitant pressure drop Ap are those of a 

H ' [ T ~ ~ ]  = Dl[u].  (7 .12)  

Substituting (7.13) in (7.11) and identifying terms with (7.4) yields (7.12). 

(7.13) 

THEOREM 10. A maximum principle. Let u(x) be a continuous solution of a 
periodic Stokes flow problem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2). 
Let Tij be any stress tensor deJined in V, and Vg) which is  piecewise continuous 
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and piecewtke continuously differentiable and satisfies (2.2), (2.7)-(2.10), (7.9) and 
(7.10). On surfaces of discontinuity of Tii the traction n;?,,is required to be continu- 
ous. Then 

n;[u] 2 H ' [ ~ J .  (7.14) 

The equality holds only if Tij = rij or Tij = rij +p,Sijwhere po  is a constant. 
Proof. Let Tij= qj+Tij. Substituting Tij in (7.11), using (4.10) and collecting 

terms as in (4.11) yields 

H'[Tij] = H ' [ ~ i j ]  - & J k k S ; j ) 2 d V  

+ 2QA17, (7.15) 

where A@ is defined by (7.10) with Tijreplaced by Ttj .  Equations (4.12) and (4.13) 
apply in the present case with S, equal to the sum of S,, sb, S,, Sg) and sg'. 
Considering the fact that bij satisfies conditions of the form (7.9) and (7.10), it is 
found that after substitution of (4.12) and (4.13) in (7.15) that (7.15) can be 
reduced to 

H'[?,j] = H'[7;j] - (Tij - Q?kk&ij)ad V 

(7.16) 

Theorem 10 follows from (7.16) and (7.12). 
A uniqueness theorem for periodic Stokes flow can be derived from theorems 

9 and 10 by the same arguments used to prove theorem 3. The result is 

THEOREM 11. Uniqueness theorem for periodic jows .  A periodic solution u(x) 
of aperiodic Stokesjowproblem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2) 
is  unique for a given discharge Q and the stress rij i s  unique to within a uniform 
pressure. 

If fi is conservative so that it has a potential !2 and the solid particles and liquid 
drops are neutrally buoyant, theorems 9-1 1 can be simplified. 

The condition that the suspended drops and particles be neutrally buoyant 
particles is equivalent to the requirement that IR be continuous in V .  Since fi is 
assumed to be periodic in xl, any difference of !2 at corresponding points of 

(7.17) 
S, and s b  is a constant, i.e. 

where AQ is a constant and A and B are any pair of corresponding points on 
S, and 8,. It follows that 

(7.18) 

rn1,- [QIB = An, 

V 
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where ui and iii are the velocity fields in theorem 9. Proof of (7.18) follows by use 
of Gauss’s theorem, (7.1), (7.2) and (7.17). Adding twice (7.18) to (7.5) yields 

THEOREM 12. If the suspended liquid drops and solid particles are neutrally 
buoyant and the body forces are conservative, then theorem 9 holds with (7.5) replaced 

(7.19) 

Similarly, theorem 10 may be replaced by 

THEOREM 13. If the suspended liquid drops and solid particles are neutrally 
buoyant and the body forces are conservative, then theorem 10 holds with (7.14) 

D[u]+ 2 a(l)A(l) 2 H’[TLi]+ 2QAQ. (7.20) 

The uniqueness theorem for periodic Stokes flows, theorem 11, remains un- 
changed whether the suspended drops and particles are neutrally buoyant or not. 

If there are no liquid drops present, or if the shape of the liquid drops is 
assumed to be constant, the terms involving &)in (7.19) and (7.20) do not appear 
and theorems 12 and 13 give bounds on the dissipation D[u] directly. I n  this case 
theorem 9 can be reformulated as follows: 

THEOREM 14. The solution u(x) of a periodic Stokes $ow problem satisfying 
(2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2) produces less dissipation than any other 
periodicjlow a(x) satisfying (2.1), (7.1) and (7.2) for the same discharge Qprovided 
(i) E(x) is  continuous and piecewise continuously differentiable; (ii) body forces are 
conservative; (iii) suspended solid particles and liquid drops are neutrally buoyant 
and of constant shape. 

Theorem 14 can be applied to the steady laminar flow of a uniform liquid with 
no suspended particles in an infinite pipe of any uniform cylindrical cross-section. 
Such a flow may be considered periodic with any periodicity A ,  0 < h < 00. Then 
theorem 14 states that the laminar flow solution of this problem has less dissipa- 
tion than any spatially periodic comparison flow of the same discharge. This is a 
result that was proved previously by Thomas (1942) for the case of uniform flow 
in a circular pipe. 

Theorem 14 is also of interest for approximate computation of the pressure drop 
in a model of capillary blood flow in which the red blood cells are represented as 
deformed liquid drops of constant shape spaced periodically in a uniform circular 
tube. 

replaced by . N L  

I = 1  
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Appendix. Analyticity of ui 
The equations of motion (6.7) and continuity (2.1) may be written 

35-2 
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and u. 2.2 ’ = 0, (A 2 )  

(A31 
1 

PJ 
where F = -@+a). 

The equations (A 1)  and (A 2) are identical in form to the equations of linear 
elasticity with Poisson’s ratio equal to fr and zero body forces, as discussed by 
Duffin (1956). Assuming only that the derivatives in (A 1) and (A 2 )  exist and 
are continuous in an open domain E ,  Duffin (1956) proves that F is harmonic, 
i.e. V2F = 0 and hence F is analytic in E.  Now (A 1) may be regarded as Poisson’s 
equation on ui where F,i is analytic. The differentiability theorem given by 
Courant & Hilbert (1962, p. 345) for a general second-order elliptic equation then 
ensures that ‘16,~ is also analytic. Thus F and ui possess derivatives of all orders. 
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