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Several generalizations of theorems of the types originally stated by Helmholtz
concerning the dissipation of energy in slow viscous flow have been given recently
by Keller, Rubenfeld & Molyneux (1967). These generalizations included cases in.
which the fluid contains one or more solid bodies and drops of another liquid
assuming the drops do not change shape. Some further extensions are given
herein which allow for drops which may be deformed by the flow and include the
effect of surface tension. The admissible boundary conditions have also been
extended and particular theorems applicable to infinite domains, spatially
periodic flows and to flows in infinite cylindrical pipes are derived. Uniqueness
theorems are also proved.

1. Introduction

The history of extremum principles for slow viscous flow (Stokes flow) is
given briefly by Keller et al. (1967) and they prove several theorems which
include and extend previous results. These theorems establish upper and lower
bounds for the excess dissipation rate which is defined to be the rate of energy
dissipation in the fluid minus twice the power of the external body forces and
given surface tractions. One of the principal generalizations introduced was to
include suspended solid particles and drops of another liquid whose motion is not
known in advance. However, the shapes of the drops were assumed to be constant
during the motion.

In the present paper it is shown that if minus twice the power delivered by
surface tension is included in the definition of the excess dissipation rate, that
minimum and maximum principles can be derived for suspensions containing
deformable drops as well as rigid particles.

The motivation for the present paper stems from a study of capillary blood
flow in which the red blood cells may be represented by a line of flexible particles
suspended in viscous flow in a tube. Spatially periodic flows are of interest for
this application and the extremum principles have also been appropriately
specialized for this purpose. Simplifications in the specification of the problem
are possible, namely, it is sufficient to specify certain integral quantities such as
the discharge rather than pointwise data such as velocity on the boundaries of the
typical periodic cell. These results can be applied to uniform flows in cylindrical
pipes also.
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Specific theorems are proved for infinite domains assuming body forces are
conservative. It is shown that the rate of decrease of the velocity at infinity can
be predicted rather than assumed and this allows a more general statement of
uniqueness and extremum principles.

All of the theorems proved helow, like those already in the literature, consider
that the configurations of the droplets and particles are known at the instant
that the fluid motion is to be found.

2. Statement of the problem

Consider a domain ¥V which contains a viscous fluid in which there are N,
liquid drops or bubbles and Ng- rigid, solid particles. The boundary S of V is
assumed not to intersect any of the suspended drops or particles. The boundary
conditions in the sense of prescribed velocity and traction components are
assumed to be gpecified only on § which will be subdivided into S;, S,, S,, S,
according to the particular components specified.

Let the domain V be subdivided into ¥V, occupied by the suspending fluid,
VP (I =1,..., N;)occupied by the fluid drops, and V¥ (k = 1, ..., Ng) occupied
by the solid particles. Let S,, SP and 8% denote the surfaces of ¥, VP and V¥
respectively. Then 8, is the sum of 8, 8P (I =1,...,N;)and 8% (k = 1, ..., Ng).
Let n denote the normal to S, directed outward from V.

Each of the fluids in ¥, and V¥ (I = 1, ..., N;) is assumed to be a uniform,
incompressible, Newtonian fluid but the viscosity #(x) may be different in each of
these domains. Let o® (I = 1, ..., N;) denote the surface tension in SP; o® may
be different for each S¢.

It is convenient to define a single velocity field u(x) for the entire domain V.
The motions of the drops and solid particles are not known in advance but are to
be found as part of the solution. The requirement of zero relative velocity of the
fluids and solids on the two sides of each 8% and S¥ is met by stipulating that
u(x) be continuous in V. Within each solid particle, the velocity u(x) is defined to
be that of the rigid body motion consistent with the fluid velocity on its boundary.

Let f(x) denote the body force per unit volume defined throughout V. Let
p(x) and 7;;(x) denote the pressure and stress tensor which are defined only in the
fluid domains ¥, and V¥ (I = 1, ..., N;). The pressure and stress are required to be
continuous except across the surfaces 8§ of the drops where the difference of
the value outside minus the value inside the drop will be denoted by Ap and
Ar,; respectively.

Let j(x), t(z), m(x) be three unit vectors which are specified at each point of
§ as part of the boundary conditions of the problem. The j, t, m must be mutually
orthogonal, but may be otherwise arbitrarily oriented at each point.

The problem is to find u(x) in V satisfying the following equations and
boundary conditions:

u,;=0, X in V; (2.1)

Ty +tfi=0, x in ¥ and VP (I=1,..,N); (2.2)
u; =g(x), X on §; (2.3)
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wji=hX), wut;=b(x), x on S, (2.4a)
Tmm = B(X), X on Sy (2.4b)
uj;=hXx), x on Sy (2.5a)
Tt = oX), Tmm,=B(X), x on S (2.5b)
Tim;=7(X), X on 8 (2.6)
ATM"ﬂFU‘”(%ﬁ%-), x on 8P (I=1,..,N); (2.7)
1 fig
Arm;— At mon,m; =0, x on SY (=1,..,Np); (2.8)
V?JcidV“fS%c)"ﬂu‘dS:O’ (k=1,..., Ng); (2.9)

f,,(k)effmxffmdv_fs(k)eif’lleanQ"l =0 (k=1,..., Ny); (2.10)
K K

TI',J' = _p8i3'+ 2ﬂ61’js X ill V(; and V(JT,) (l = 11 LR L); (211)
e; =0, x in V¥ (k=1,..., Ng); (2.13)

where e, ;. is the alternating tensor and d;;is the Kronecker delta. R, and R, denote
the two principal radii of curvature of S{ reckoned positive when they extend
into the drop. The functions a, B, v, ¢, h, b are given as part of the boundary
conditions.

Equations (2.1) and (2.2) are the equations of continuity and motion for the
Stokes flow in the fluid domains.

The boundary conditions (2.3), (2.4a), (2.5a) and (2.6) specify 3, 2, 1 or 0
components of the velocity on 8,, S,, 8;, S, respectively. In each case, a sufficient
number of traction components are also specified by (2.4b), (2.5b) and (2.6) to
make the solution unique, as will be shown in the derivations below.

Equation (2.7) equates the difference of the normal components of the tractions
on the two sides of S to the effect of surface tension o® Equation (2.8)
states that the tangential component of the surface traction is continuous
across SY.

The equations of motion of the solid particles are expressed by (2.9) and
(2.10).

Equations (2.11) and (2.12) define the stress tensor 7;;and e,; for a Newtonian
fluid and (2.13) ensures that the motion within S% is that of a rigid body.

Only solutions u(x) which are continuous throughout V will be considered;
derivatives of u may be discontinuous on 8P (I =1, ..., N;) and on 8% (k = 1,
vees Ng)

The domain V is considered to be finite until §6 where infinite domains are
specifically considered. Spatially periodic flows are treated in §7.

34 FLM 42
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3. A minimum principle

Let therate of dissipation of energy into heat by viscosity in V be denoted D[u].
It is defined by

Np
Dlu] = fr 2u(e;[u])*dV + lzlfV(Z) 2u(e;u])dV. (3.1)
o =1J vy

The excess dissipation rate D,[u] is defined to be the rate of viscous energy
dissipation minus twice the power of the external body forces, the given surface
traction components and the surface tensions:

D, u] = D[u]—2frfiu1-dV—2 ‘.’uimfﬂdS

o

Ny, .
¥ 0040, (3.2)
=1

- 2f (w t;o+u; m ) dS — 2f w;y, dS + 2
Sa Sy

where A® is the time rate of change of the area 4® of 8P (I =1, ..., Ny). The
product (— c®A40) is the rate at which surface tension does work on the adjacent
fluids and is also the rate at which the surface energy c®A® decreases. At any
time, 49 is given by (cf. Landau & Lifshitz 1959)

. 11
[()J— | — 4=
A f Sg)uznl ( BT Rz)ds. (3.3)

The minus sign in (3.3) is due to the fact that n is the normal taken outward
from ¥, which is inward to V{.

THEOREM 1. 4 minimum principle. Let u(x) be a continuous solulion of a
Stokes flow problem satisfying (2.1)-(2.13). Let G(x) be any continuous velocity
field which is piecewise continuously differentiable and satisfies (2.1), (2.3), (2.4a),

2.5a), and (2.13). Then -
(2:5), and (2.13) D,[u] < D,f6] (3.4)

The equality holds only if i = u or Ul = u+u,; where u, is a rigid body motion.
(Note that the configurations of the droplets and solid particles are identical
for both flows u and 1 at the instant considered.)
Proof. Let i = u+1i. Then from (3.1)

D[u] = Dju+1i] = D[u]+ D[i1] +f dpelule [aldV

. NL
+ 2w dpe [ule;[]dV.  (3.5)
1=1J vl
In (3.5), 2ue,;[u] may be replaced by 7,;/u] because the trace of e ;[{i] is zero. Also,
e;[i] may be replaced by 4, ; because 7,[u] is symmetric. Then using (2.2),
(3.5) becomes
D[1] = D[u] +D[fl]+f (2(0;8;m{a]) + 2f;@;)dV

¥y

N
+ Zf (1)(231'(77457'11;[11])+2f;.17,i)dV_ (36)
=1 VL
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Now replacing u in (3.2) by G and using (3.6) and Gauss’s theorem, yields (3.7),
below. In applying Gauss’s theorem the surfaces on which the derivatives of G
are discontinuous give no net contributions. The contributions from the two
sides cancel because 1l and ii are continuous. Thus

D,[G] = D[u]+ D[ii] + 2fs @, 75 [uln,dS + "f fa,dv

3

-2 E ;78 [uln;dS + 2 Zf (Z)fbude

O
—2fﬁ @)dV— 2f (u; + ;) m, BdS
_2 f (g + ) (e + m ) dS — 2 f g+ By, dS
S, S,

+2 Y o040 4oy, (3.7)

=1

where 4®is given by (3.3) and 4@ is the rate of change of A® under the velocity .
Since (3.3) is linear in u, 4® is given by (3.3) with u replaced by ii. In (3.7) the
superscripts in 7¢) [u] and 7¢) [u] have been added to denote the stress tensors on
the two sides of the surfaces 8P facing ¥, and V¥ respectively. The difference
(7' [u]—7) [u]) is Ar;; as used in (2.7) and (2.8).

Since u and @ both satisfy (2.3), (2.4a) and 2.5a), the components of {1 corre-
sponding to the specified components of u on § are zero. Further, 7,,[u] satisfies
(2.4b), (2.5b) and (2.6). As a result, the surface integrals in (3.7) over §,, S,, S5
and 8, involving i all cancel. The surviving terms of (3.7) may be written

N

D] = D,[u]+ D[] +2 % J' @, A1, m,dS

=1

i7"t

Ng
2 &G f,dV+2 3, 70,08 + 2 Za’“’Am (3.8)
v k=1J sk =1
The integrals over V{¥ and S%) in (3.8) are the rate of work done on the solid
particles by the body forces f; and surface tractions 7,;[u] under the motion .
Since i is a rigid body motion within each V¥ it has the form

i = aP + €itm (36 g, ) Ty X N Ve, (3.9)
where @™ is a constant vector and the angular velocity (3¢, ;) which appears
in (3.9) is also constant within V. Using (3.9), (2.9) and (2.10) it follows that
the sum of the integrals over V% and 8%’ is zero in (3.8).

The surface integrals over 8% and the surface tension terms in (3.8) may be
rewritten using (3.3), (2.7) and (2.8) as
N1 Nz .
2% u Ar,m dS+2 Y o®A0
=1

L4 Rt =1

ot A oo L 1\ 3.10
= 1§1 un{ T g Mg o — (E"‘E)} , (3.10)

34-2
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where #;A7;;n; has been replaced by n;At,,n,n, because the tangential

component of A7,;n,is zero by (2.8). The last integrand in (3.10) is zero by (2.7).
Hence (3.8) becomes D,[@i] = D,[u] + Drii]. (3.11)

Since D[i1]is never negative and is zero only if @i = 0 or if i is arigid body motion,
theorem 1 follows.

If the boundary conditions are such that no rigid body motion is possible satis-
fying (2.3), (2.4a) and (2.5a) when the given functions g, k, b are replaced by zeros,
then i cannot be a rigid body motion. In this case D, [fi] = D,Ju] only if i = u.
This is the case, for example, if S, contains at least three non-colinear points.

4. A maximum principle

A maximum principle for the Stokes flow problem stated in §2 can be obtained
in terms of a functional HJ[r;] of the stress tensor 7;;. This functional will be
called the excess power. It is defined as twice the power delivered by surface
tractions on § acting through the given velocity components g, b,  minus the
dissipation expressed in terms of the stress:

Hir,] = 2J‘g 9,T;;7,d8 + ZJS (hj;7;5m5+ bl 75m;) S
. 1
+ 2fs kjs7;m,dS — fV 2‘#‘ (75— 37102 AV
Ng

1
- (T — 37802
l§1ng)2lu(TL-" T idip)*dV . (4.1)

When 7,;is the stress tensor corresponding to a solution u of (2.1)—(2.13), then
H[r;] = D,[u]. (4.2)

To prove (4.2), consider first that for a solution 7;;[u], the volume integrals over
V,and V{ in (4.1) become equal to those in (3.1) and add up to D[u]. Next, by use
of the boundary conditions (2.3)—(2.6) the surface integrals over S, S, and §; in
(4.1) may be written:

f 9;7;;m,;d8 = f u;T;;m;dS, (4.3)
S, S

f (hjﬂijnj+bti‘r”nj)d8 =f uiTijnde—J‘ u;m, fdS, (4.4)
Sz SZ S2

fs by m;dS = fs w, T;; 1 AS — fs (w00 +u;m; f)dS. (4.5)

Using (4.3)-(4.5) in (4.1) and adding and subtracting twice the integral of
u,;T;;n, over S, gives

Tis
Hir;l = 2f ;T 137,08 — 2f u;mfdS
s .

~2 ot um)as 2| uyds-Diuy (4.6)
S S,

L}
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The first integral in (4.6) is the rate at which surface tractions on S do work on the
fluid in V. This integral may be evaluated by expressing conservation of energy
in the form

Ny, .
f w7, A8 + f fudV = Dlul+ ¥ o040 (4.7)
S 14 1=1

Equation (4.7) is not an independent postulate here since it may be shown to
follow from (2.1) to (2.13). Using (4.7) in (4.6) to eliminate the integral of u,,
over § gives H[r;]in a form which is identical to (3.2) so (4.2) is proved.

LJJ

THEOREM 2. A maximum principle. Let u(x) be a continuous solution of a
Stokes flow problem satisfying (2.1)—(2.13). Let 7;; be any stress tensor defined in V,
and V' which is piecewise continuous and p@ecewwe continuously differentiable and
satisfies (2.2), (2.4b), (2.5b), ( 6), (2.7), (2.8), (2.9) and (2.10); on surfaces of
discontinuity of 7. ;the traction n;7,;is required to be continuous where n; is the normal
to the surface of dzscontmmty of ; (other than the surfaces 8P of the drops) Then

D,[u] > H[7;]. (4.8)

The equality in (4.8) holds only if 7,; = 7,;0r 7,; = 7,; + pyd;; where p, is a constant.

Proof. Let7;= =Tyt i, where 7,;is the stress tensor correspondmg to thesolution
u. In (4.8), H[‘r]] is given by (4. 1) with 7;;replaced by 7;;

(ALY M

H[7;] = ZJ A dS+2f (hj; 75105+ bk T m ) AS

+2f by m,dS — f — 3T 0;;)2dV
Nz 1 5
IZIJVU) 2,“( 25— 37w 02V . (4.9)
The integral over ¥ in (4.9) is
1
JV 2/’(’ (Tu 3TIJc u dV J' STkka )2dV

1 ~
+JV»/—L(TU—%"M3 ) (Tij = 37w 0;) AV

1.
+JV.,2,LL(T — 171,8,)2dV. (4.10)

An expansion similar to (4.10) can be written for the integrals over V{ in (4.9).
Using these expansions in (4.9) and comparing to (4.1) gives

H[7j) = Hnj)— f lﬂ(r” by RdV

S La_wmesrdv
— — (T, — AT »
ZEIJ\V(I{) 2/[/( i3 3'kk z])

- 2f €i(Fii— ¥ 05) AV
Vo
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2% o o= VeV

+2f 9;7;m,dS + 2fs (hj7 iym;+ bt Tym;)dS

[404¢ )
+2f hyj T m,dsS. (4.11)

In (4.11), (2.11) has been used to replace 7,; in terms of e;;. The integral over ¥,
containing e;;in (4.11) may be written

J‘reij(i;j 370 0,)dV = f T dV = fu”TtJdV

=f O (uTy)dV = urqn 8. (4.12)
Vo S
In deriving (4.12), account is taken of the facts that u,is an incompressible flow
and that 9,(7;;) = 0, since both 7,;and 7;;satisfy (2.2). The surfaces of discontinuity
of 7,;would also enter in (4.12) but since 7;;n; and 7,;n; are both continuous across
such surfaces, the contributions over the two sides of these surfaces cancel.

A transformation similar to (4.12) yields

fvg)eij(?ij— 3 0)dV = — f 0 u;Tyym;dS, (4.13)
where n;is again the normal outward from V. The surface S, in (4.12) is the sum of

81, 8y, S, Sy 8P and S . When (4.12) and (4.13) are substituted into (4.11), all
the surface integrals, except those contained in H[7;], are found to cancel leaving

[J—Hh]f APV

1.
-¥ f,,m o = 1V (4.14)

In the reduction of (4.11) to (4.14), the surface integrals over S, which arise are:

i7"

2f (hjiT jm;+ bt 7 m)dS — 2f w7y n;dS
S,

ARV R}

= 2f (hgiTyym; 4 b7 m,)dS

- 2f (UodqJiTizn+ wgly U Toym; + ugmom my)dS. (4.15)
The sum of the integrals in (4.15) is zero because u satisfies (2.4 a) and both 7;;and

7;;8atisfy (2.46) so that 7;m,m; = 0 on S,. The cancellation of integrals over S}, S;
and 8, follows similarly.
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Surface integrals over S¢ arise from (4.12) and (4.13) which combine in (4.11)
to give terms of the form
f Ny, (4.16)

Sz
where A7,;is the jump of 7;;across the surfaces S§'. The tangential components of
T;;n; and 7;;m; are continuous across SP since both satisfy (2.8). The normal

components of 7,;n,and 7;;n, take the same jump, as prescribed by (2.7). Hence

Af,;n;is zero and (4.16) vanishes.
On the surfaces S (k = 1, ..., Nx), the integrals arising from (4.12) are of the

form
f oy 88. (4.17)
)4

Since u; has the form (3.9) on S and both 7;;and 7; satisfy (2.9) and (2.10), it
follows after substitution of (3.9) in (4.17) that (4.17) also vanishes.

In (4.14) the volume integrals involving 7;; are positive unless 7;is zero or of
the form p,é;; where p, is a constant. Hence

Hl7,] < Hir] (4.18)

and the equality holds only if 7;; = 7,;0r if 7;; = 7;;+ p,J;;. Theorem 2 follows from
(4.18) and (4.2).

The constant p, will be zero if no uniform pressure field can satisfy the stress
conditions (2.4b), (2.5b) and (2.6) when the given «, f, v are replaced by zeros.
In this case D,[u] = H[7;] only if 7;= 7,;. This is the case, for example, if §,
contains at least one point.

Theorems 1 and 2 contain the minimum and maximum principles given by
Keller et al. (1967) as special cases in which the drops are of constant shape, S, is
absent, and j is coincident with n.

The theorems 1 and 2 also apply to drops or regions of constant volume of one
or more immiscible fluids in another fluid where the surface tensions are negligible
(6® = 0). Then deformation of drops is to be expected in general.

5. Uniqueness theorem

THEOREM 3. The solution v of a Stokes flow problem posed by (2.1)—(2.13) is unique
to within a rigid body motion and the stress T;;is unique within a uniform pressure.

Proof. Let u® and u® be two solutions. Then (3.4) holds with u = u® and
i = u® and vice versa so the equality in (3.4) would hold. The first part of theorem
3 then follows from theorem 1.

Similarly, let 7¢ and 73 be the stresses corresponding to u® and u®. Then
(4.18) holds with 7, = 7§} and 7;; = 7{? and vice versa so the equality would hold
in (4.18). The second part of theorem 3 follows from theorem 2.

The arbitrary rigid body motion and the arbitrary uniform pressure implied in
theorem 3 will be zero under the same conditions as discussed below (3.11) and
(4.18).

Theorems 1, 2 and 3 can be applied to a single homogeneous fluid by deleting
all references to suspended drops and particles.
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The theorems also apply if any one, two, or three of the surfaces S, S,, Sy, S,
are absent. However, every point of § must be a point of one of the surfaces S,
S,, Ss, 8;. The boundary conditions on S which are permitted by (2.3)-(2.6)
specify just enough components of velocity and traction to make the solution
unique. This requires that sufficient components of velocity and/or traction be
specified at each point of S that if #; and 7,; are differences between two fields
which both satisfy the boundary conditions on 8, then the work rate #7;n;is zero
at every point of S.

6. Infinite domains

In the theorems 1, 2 and 3, the domain V is assumed to be finite. The theorems
can be applied to infinite domains if it is assumed that the velocity and stress
fields decay fast enough so that the surface integrals which arise over a sphere at
infinity vanish. The situation is similar to that of linear elastostatics for exterior
domains treated by Gurtin & Sternberg (1961). As they point out, the rate at
which a solution approaches specified values at infinity is an item of information
which one would legitimately expect to infer from the solution, rather than a
condition to be imposed on the solution in advance. A uniqueness theorem
resting on an assumption of the rate of decay at infinity leaves in doubt the
existence of solutions which approach the specified values at infinity less rapidly.

In the present section, generalizations of theorems 1, 2 and 3 are proved for
infinite domains without assumptions of the rates of decay of the solutions at
infinity. It is also shown that the comparison flows for the various theorems must
be subject to a specification of the rate of dilation of the internal boundaries.

The nomenclature of §2 will be used also for infinite domains with the under-
standing that the region ¥ is now an exterior domain bounded internally by the
surface S. The surface S is assumed to consist of a finite number of closed surfaces
which lie within a finite sphere, r = 7, where 7, is a constant and 7 is the distance
from the origin. The surface § is again considered in four parts S, S,, S;, S,
according to the boundary conditions specified. It is assumed that the number of
liquid drops, N;, and the number of solid particles, N g, in suspension in V are
finite and that they also lie within the sphere r = ;. The suspending fluid occupies
the region V, which is the portion of V not occupied by solid particles or liquid
drops. The surface Sy of ¥} consists of 8}, Sp, S5, Sp, SP (I =1, ..., N;) and SE
(k=1,.., Ng).

The only boundary condition at infinity which will be considered is that the
velocity approach a constant vector uniformly at infinity, i.e.

lim u; = U, (6.1)
750
where U, is a given constant vector. Whenever the boundary condition (6.1) is
imposed, a system of axes translating with velocity U, may be used so that the

condition (6.1) is replaced by W 0 (6.2)
im u; = 0. .

r— w0

The condition (6.2) will be assumed to apply in all cases below.
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An additional restriction that will be imposed for infinite domains is that the
body force within V; be conservative, meaning there exists a single valued
potential, Q(x), such that .

[=-Q, x in I, (6.3)

The boundary conditions on the interior boundaries S,, S,, S;, S, are the same
as for finite domains detailed by (2.8)-(2.6). It will be shown that for an infinite
domain the total rate of expansion, ¢*, must also be specified for uniqueness of the
solution. Hence the statement of the problem will be augmented by the require-
ment

—f u;m dS = 0%, (6.4)
s

where ¢* may be a given function of time in general.

A complete statement of the problem considered in this section is to find u(x)
in the infinite domain, V, described above satisfying (2.1)-(2.13), (6.2), (6.3) and
(6.4).

The dissipation rate D[u] is again defined by (3.1) with the understanding that
the integral over ¥, is now interpreted as the limit

f 2u(e;[u])2dV = lim 2u(e;[ul)*dV. (6.5)
Vo p—>0J Vip
where ¥, is the portion of }; within a sphere r = p.

The excess dissipation rate D}[u] for an infinite domain V is defined by

N
D;*[u]:p[u]+2f Qul.nidS—2ZIJ. Judv
So =1 v

~

Ny
—-2¥ J fru,dV — 2f wym; BdS
v S,

k=1

Ny, R
Y 0040, (6.6)
=1

—2f (uitia+uim{ﬂ)d8—2f u;Y;dS + 2
3 S‘

This definition (6.6) differs from (3.2) in that the rate of work done by body forces
in ¥, has been replaced in (6.6) by the rate of change of potential energy due to the
motion of the boundary S, of ¥,. If the domain ¥, were finite, this potential
energy term would be equal to the integral of f,u; over ¥, by Gauss’s theorem,
(2.1) and (6.3). Then (6.6) would be equivalent to (3.2).

The counterpart of theorem 1 for infinite domains requires a representation
theorem for «, which is developed first below.

The velocity field u(x) is assumed to be continuous and to possess continuous
derivatives up to second order within each of the domains ¥, V¥ (I = 1, ..., N).
At the boundaries of ¥V and V' the velocity u(x) is required to be continuous
but its derivatives may be discontinuous. Then as shown in the appendix, »,must
be analytic within ¥, and V.

Equations (2.2) and (2.11) may be combined to give the usual equations of
motion within ¥ and V. 1

1
i+ fi=0. 6.7
2Pt (6.7)

Ui j5—
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Taking (9/ox;) 9/ox,, of (6.7) and using (6.3) and (2.1) yields

Posget Qo= 0. (6.8)
Taking (6/0x,) 8]0, of (6.7) and using (6.8) shows that the velocity is biharmonic,
ie. Véu; = 0. (6.9)

A representation of biharmonic functions in an exterior domain has been
developed by Gurtin & Sternberg (1961). A region # is defined as a deleted
neighbourhood of infinity characterized by

Ty < T < 00, (6.10)

where 7, is a constant. For such a region they prove

THEOREM 4. Let F(r, 0, §) be bikharmonic in X, where (r,0, ) are spherical polar
co-ordinates. Then

(a) F(r,0, @) admits the representation

Fir,0,0)= 3 MO, 0,0)+r2 T H®(r,0,9), (6.11)
k=—o k=—oo
where B (r, 0, ¢) and H®(r, 8, ¢) are solid harmonics of degree k and both infinite
series are uniformly convergent in every closed subregion of X,

(b) F(r,0,¢) in Z has partial derivatives of all orders, series representations of
which may be obtained by performing the corresponding termwise differentiations of
(6.11), the resulting expansions being also wniformly convergent in every closed
subregion of Z;

(c) if n is a fixed integer, the three statements

@) F(r,0,¢) =0, (6.12)
(il) F(r,0,¢) = o(rm), (6.13)
(i) A®(r,0,¢) = H&2(r,0,3) =0 for k>=n (6.14)
are equivalent and imply
(iv) F,(r,0,¢) = O@r?). (6.15)

The orders of magnitude F = O(r*) and F = o(r") indicate, as usual, that [r—"F|
remains bounded uniformly and |r—F| approaches zero uniformly, respectively,
ag r — co.

The following theorem follows from theorem 4.

THEOREM 5. Suppose u,(x), e;(x), 7,5(x) and f; in X satisfy (2.1), (2.2), (2.11),
(2.12) and (6.3). Then if n is a fixed integer

u; () = o(r™) (6.16)

tmplies
1) wlx) = O™ 1), (6.17)
(i) ey=0(rm2), (6.18)

(iii) p.,+Q,; = 0@F*3). (6.19)
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Proof. Since u,(x) is biharmonie, theorem 4 applies with F replaced by «,. Then
(6.16), (6.13) and (6.12) imply (6.17). The definition (2.12) and (6.15) yield (6.18).
Substituting (2.12), (2.11) and (6.3) into (2.2) and applying (6.15) again gives
(6.19).

THEOREM 6. A minimum principle for infinite domains. Let V be an exterior
domain containing Ny, liquid particles, Ny solid particles and internal boundaries S
within a finite sphere r = ry. Let u(x) be a continuous solution of the Stokes flow
problem satisfying (2.1)-(2.13), (6.2), (6.3) and (6.4). Let G(X) be any continuous
velocity field which is piecewise continuously differentiable and sabisfies (2.1),
(2.3), (2.4a), (2.5a), (2.13), (6.4) and

u;,=0(r1) as r-—>oo. (6.20)
Then Df[u] < D¥[u], (6.21)

where Df[u] is defined by (6.6). The equality in (6.21) holds only if G = u.

Proof. Let i = u 4 #i. From (3.1) the forms (3.5) and (3.6) follow as before with
the understanding that the integrals over F} are interpreted in the sense of (6.5).
Replacing u by @ in (6.6) and using (3.6) and Gauss’s theorem yields (6.22)
below. In applying Gauss’s theorem to I, in (3.6), the surface of I is considered to
consist of S, plus S, where S, is the surface of a sphere r = p, p > 0. Then

D¥[@] = D[u]+ D[] +2 f ;v [uln,dS + 2J f,@,dV

(l)

-2 E @ TDu]n;dS +2 2 J lfiﬁidV
=1 v®

+ 2f #rulndS+2 | Qu; +d;)n,dS
Sp

S,

2 filu;+@)dv — 22

(ll V(k\

filu,+4,)dV

—-2J (ui+11i)m,b-,3dS—2J (u; +4;) (t,a+m; B)dS

N . .
- 2f (w;+4;)y;d8 +2 3 0040+ 4o), (6.22)
A 1

1=

where the notation is the same as in (3.7). Since u and @ both satisfy (2.3),
(2.4a) and (2.5a) and 7,; satisfies (2.4b), (2.5b) and (2.6), the surface integrals
over Sy, 8,, S; and S, involving @t and 7,;all cancel in (6.22). The surviving terms
may be written

Ny .
D¥[t] = D¥[u]l+D[a]+2 _,‘_{J l)ulAfr in;dS + 2J f,dV
[’ -

¥ )”if,L.dV+2§ o 7 ,dS+2zaMm

k=1

+2J JTlalndS+ 2f Qit;n;dS. (6.23)
Sp
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Equation (6.23) is the counterpart of (3.8). The terms in (6.23) which are summed
over [ and k pertain to the liquid and solid particles and add up to zero as shown
below (3.8). Applying Gauss’s theorem to the region ¥, considered bounded by S,
internally and S, externally and using (6.3) and (2.1) yields

Sy Va Sp
Substituting (6.24) in (6.23) gives
D¥[0] = D¥[u]+ D[ii]+2 f (1 ;[u] — 8, Q)n;dS . (6.25)
Sp

Using (2.11) the integral over S, in (6.25) is
f Uy (1y;u] —8;Q)n,dS =f pige luln,dS
Sp Sp
-[ w+oamas. (6.26)
Sp

Theorem 5 applies to u; with n = 0 by virtue of (6.2). Hence ¢;;[u] = O(r—2%) by
(6.18). Further, #, = O(r~1) by (6.20) and (6.17). It follows that the first integral
on the right of (6.26) is zero in the limit p — co.

If the integration of (6.19) is considered along a path lying on the sphere S,

it follows that onr = p
Pp+Q=p*+F(r,0,¢), (6.27)

where p* is a constant and F(r, &, ¢) is a function of order O(r—2). Hence

f (p + Q)ii,n,dS = p* f im,dS + f F(p,0,¢)im,dS.  (6.28)
Sp Sp Sp

The first integral on the right of (6.28) is zero since u and i satisfy (6.4) and the
second integral is zero in the limit p - c0. Hence (6.28) and (6.26) are zero and
theorem 6 follows from (6.25). In the present case, u, and %; cannot differ by a rigid
body motion because of the boundary condition at infinity so the equality holds
in (6.21) only if 0 = u.

A maximum principle for infinite domains corresponding to theorem 2 for
finite domains can be derived if the excess power is redefined for infinite domains
as follows

H*[r,;] = 2f g; 71,08 + 2f (Bj;7i5m;+ bl 7 m ) dS
A S

+ 2f b7 mAS — 20%p*
S

1
> f,,g>'2ﬁ(7if“%”lrk8ij)2dV- (6.29)
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The difference between (6.29) and (4.1) is that the term —26*p* has been
added in (6.29). The total rate of expansion, 6*, defined by (6.4) is a part of the
given kinematic data and the work done by the pressure and body forces at
infinity represented by p* is therefore included in the excess power. H[r,] is
defined only when p* exists as defined by

p*=lim (p+ Q)= lim (—4r,,+Q). (6.30)
r—> w0 >
When 7,; is the stress tensor corresponding to a solution of (2.1)-(2.13), (6.2),
(6.3) and (6.4), then
H*[1,] = D¥u), (6.31)

where D}[u] is given by (6.6). To prove (6.31), we proceed as in proving (4.2).
In the present case, (4.3), (4.4) and (4.5) hold also. Using (4.3)—(4.5) in (6.29) and
subtracting twice the integral of u;7;;n;over S, gives

H¥1,] = 2f Uy TymdS — 2f w;m; fdS
S S,

—2f (wit; oo +u;m; f)dS — 2f u; Y A8
S, Sy
—20*p* — D[u]. (6.32)

Instead of (4.7), the conservation of energy now takes the form
N »
f u; Ty, A8 + [ u; Ty;n;dS +f fiu,dV = Dlu]+ ZLO'(’)A“), (6.33)
S J Sp 14 =1

where the integrals over S, and V are interpreted as the limits for p — co. Using
(6.3) and Gauss’s theorem these terms may be written

f ui'r,ijnde+f fiuidV=—f uipnidS—f Qu,n,dS
Sp v Sa So

Ny, Nk
._f Qu;m,d8+ zf fudV+ zf fudV.  (6.34)
So =1 v k=1J ()

The two integrals over S, on the right of (6.34) may be replaced by — 6*p* in view
of (6.27) and the fact that »; = O(r~'). Substituting (6.34) into (6.33) and using
(6.33) to eliminate the integral over S in (6.32) yields H* [7,;] in a form identical
to (6.6) so (6.31) is proved.

THEOREM 7. A maximum principle for infinite domains. Let V be an exterior
domain containing Ny, liquid particles, N solid particles and internal boundaries S
within a finite sphere r = r,. Let u(X) be a continuous solution of the Stokes flow
problem satisfying (2.1)—(2.13), (6.2), (6.3), (6.4). Let 7,;; be any stress tensor defined
in Vyand VP which is piecewise continuous and piecewise continuously differentiable
and satisfies (2.2), (2.4b), (2.5b), (2.6)—(2.10). On surfaces of discontinuity of
T;; the traction nT; is required to be continuous where n; is the normal to the surface
of the discontinuity of T,;. Further, the limit, p*, defined by (6.30) must exist and

Tiy— 30 5=0@"?) as r— oo (6.35)
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Then D}[u] > H*[7;). (6.36)

The equality in (6.36) holds only if 7,; = 7,; or 7;;= 74+ p,0;; where p, is a
constant.

Proof. Let T = 7;;+7;;, where 7,; is the stress tensor corresponding to the
solution u. In (6.36), H*[7;] is glven by (6.29) with [7,;] replaced by [7,;] and p*
replaced by p*. The same steps that were used to convert (4.9) to (4.11) yield

H¥[7,;] = H¥[1,;]- f 5 (Fiy— 3710 0y5)2dV

Ny, 1
- Efy(l)2,u( — 3T 0y)2dV

1

- fV eii(Ti;— 5711 015) AV
Np

-23 ng) €Ty — 3T 035)dV

=1
S, Sa
+ 2f hy;7ymydS — 20%p* (6.37)

where §* = p* — p*. The integral over ¥, containing e,;in (6.37) may be rewritten
by the same steps as in (4.12) to yield

f es;(Fi;— 37rr 03;)dV =f w;Tyn,d8 +f w;T;m;dS. (6.38)
Ve S,
The integral over S, in (6.38) may be written
f U Ty dS = | wy(Fyy— 310 035) A8 — | w, p*ndr. (6.39)
Sp Se Sp

The first integral on the right of (6.39) is zero in the limit p - oo due to (6.2) and
(6.35); the second integral is equal to — 260*g*. Substituting (6.39) and (6.38) into
(6.37) and using the same arguments as used in connexion with (4.14) gives

H¥[7,)] = H¥[ry)]— f S Py $0y)2 AV

P 1 F 17 2
— g (l) '27[/(7',”—‘ §Tkk 8”) dV. (6.4:0)
The integrals in (6.40) are positive unless ¥, is zero or of the form p, é,; where p,
is a constant throughout ¥, and V. Hence
H*[7;;] < H¥[r] (6.41)
and the equality holds only if 7,; = 7,; or if 7;;= 7,;+ 2, ;;. Theorem 7 follows

from (6.41) and (6.31). The constant p, will be zero under the same conditions
discussed below (4.18).
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THEOREM 8. Uniqueness theorem for infinite domains. Let V be an exterior
domain containing Ny liquid particles, Ny solid particles and internal boundaries S
within a finite sphere v = r,. Then the solution u of a Stokes flow problem posed by
(2.1)-(2.13), (6.2), (6.3) and (6.4) is unique and the stress 7;; vs unique to within a
uniform pressure.

Proof. The proof follows from theorems 6 and 7 by the same arguments by
which theorem 3 follows from theorems 1 and 2.

In theorems 6, 7 and 8 the requirement that 6* be specified as part of the given
data may be redundant if sufficient velocity components are specified by
(2.8)—(2.5) to compute the integral in (6.4). In this case, the separate requirement
(6.4) may be deleted.

The physical significance of specifying * is illustrated by the following simple
problem.

A hollow spherical cavity of radius r,, centred at the origin, is surrounded by a
uniform viscous liquid extending to infinity. Suppose the body forces are zero
and the internal pressure in the cavity is p,, a given constant. Find the creeping
motion of the fluid.

The solution of this problem is

Uy = (Po— 1) 73/ 4pr%, (6.42)

which is not unique because ¢, is an arbitrary constant equal to the pressure at
infinity which was not specified.
If the problem is augmented by requiring 6* to be a given value, the solution is

u, = 0%/4mr?, (6.43)

which is unique. The stress tensor is now also unique. In effect, specifying 6*
determines the pressure at infinity.

7. Spatially periodic flows

Consider an infinite pipe whose cross-section is variable, but periodic with
respect to a co-ordinate x; with periodicity A. The walls of the pipe are fixed and
rigid and may contain additional internal boundaries provided they are also
fixed and rigid. Let the remaining space be filled with a viscous liquid containing
liquid drops and solid particles which are also distributed periodically in z;.
Body forces f; are assumed to be periodic in z, also. It is assumed that the velocity
field of any Stokes flow in the pipe under these conditions is periodic in z; and
consists of a series of identical cells.

Each cell has two identical surfaces, say S, and S, in order of increasing z;,
spaced A apart. S, and S, need not be plane, but are chosen to extend entirely
across the flow and not to intersect any liquid drops or solid particles. The
remaining surface of the cell, say §,, consists entirely of fixed boundaries. Hence

;=0 on S, (7.1)
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Let the volume of a typical flow cell be ¥ with boundary S equal to the sum
of §,, 8, and ;. Let V contain N, liquid drops and Ng rigid, solid particles. Let
Vo, VP, V¥ be the parts of ¥ occupied by suspending fluid, liquid drops and solid
particles respectively with surfaces S,, S and S¥'.

The discharge, ¢, through the pipe must be the same for all cross-sections, i.e.

f u,dS =@ al¥, (7.2)
-

where §’ is any cross-section of the flow cell and u,, is the component of velocity
normal to §’. The discharge @ includes suspending fluid, liquid drops and solid
particles. The general problem considered is to find u(x) in V satisfying (2.1),
(2.2), (2.7)~(2.13), (7.1) and (7.2) with @ given.

Substituting (2.11) in (2.2), it may be seen that since f; and u, are periodic,
P,; i8 periodic in #; and op/ds is identical for corresponding paths on S, and §;.
Then by integrating along S, and S, it follows that any difference of pressures at
corresponding points of 8, and §, is the same constant, say Ap, for all pairs of
corresponding points. A mean pressure gradient, p,, is defined by

The dissipation D[u] in V is given by (3.1). The excess dissipation D,{u] for
the present case is defined by

N .
Difu] = D[u]—-2 f FudV+23 o040, (1.4)
14 =1

where 49 is given by (3.3).

THEOREM 9. 4 minimum principle. Let u(X) be a continuwous solution of a periodic
Stokes flow problem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2). Let Ti(X) be
any continuous periodic velocity field which is piecewise continuously differentiable
and satisfies (2.1), (2.13), (7.1) and (7.2). Then

D;[u] < D;[i]. (7.5)
The equality holds only if u = @.
Proof. Let i = u+1i. Then (3.5) and (3.6) apply in the present case also.
Replacing u by 1i in (7.4), using (3.6) and Gauss’s theorem yields

]

Di[@] = D[u]+ D[d] +2 f @[] n;dS + 2 f fi,dV
S, Va

0
Ny, n Ny,
-2 @, 1ya]ndS+23 L, dV
I=1J 8¢ =1 V(If)
N

-2 f filw,+3,)dV + 2 ZL o040 + A0), (7.6)
14 I=1

where the notation is the same as in (3.7) except that in (7.6) S, is the sum of
8y Sy, S, SP and S%. The portion of the integral over S, in (7.6) associated with
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8¢ and 8% combines to nullify the same terms as in (3.7); the portion over 8,
iszero by (7.1). This leaves only the integrals over S, and S, which may be written

QJ &7 [uln;dS + Qf % 1y;[uln,dS
Sy Sp

=2 f i[9 [u] — 7@ [u]]n,dS. (7.7)
Ss

The difference of the stress tensors on S, and S, represented by 73 —7{% in (7.7) is
equal to Apd;;at every point. Further, the integral of #,n, is zero over S, because
01 and u satisfy (7.2). Hence (7.7) is zero and (7.6) reduces to

Dfii] = D,[u] + DIii]. (7.8)

Then (7.5) follows from (7.8).

A maximum principle similar to theorem 2 for spatially periodic flows can be
derived for suitably restricted comparison stress fields, 7;;. The stress deviator of
7;; is required to be periodic in x; and the pressure » must exhibit a constant
difference Ap for all pairs of corresponding points on S, and S, of the typical cell.

Thus C g
% — ¥4, 0;; = periodic in @y, (7.9)

[—5x)a— [— Tl = AP, (7.10)

where Ap is a constant and 4 and B are any pair of corresponding points on
S, and S,. ‘

The excess power H'[7;;]is defined for a periodic Stokes flow having a discharge
@ and any stress field 7;; satisfying (7.10) by

1
H'[1;] = 20Ap — [V ﬂ(”i;‘—%”kkatj)de

e[ 17,8, )2dV 7.11
> V(Ll)ﬂ(”ij—?’kk i) s (7.11)

=1

where ¥, and V¥ refer to the typical cell of the flow.
When the stress tensor 7,; and concomitant pressure drop Ap are those of a
solution u(x) of the periodic Stokes flow problem with discharge ¢, then
H'[r;] = D,ju]. (7.12)
To prove (7.12), we use (4.7) to show that

N .
QAp = D[u] + zLawAm_f foudV. (7.13)
=1 v

Substituting (7.13) in (7.11) and identifying terms with (7.4) yields (7.12).

THEOREM 10. A maximum principle. Let u(x) be a continuous solution of a
periodic Stokes flow problem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2).
Let 7;; be any stress tensor defined in V, and V¥ which is piecewise continuous

35 FLM 42
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and piecewtse continuously differentiable and satisfies (2.2), (2.7)-(2.10), (7.9) and
(7.10). On surfaces of discontinuity of 7;; the traction nT,;is required to be continu-
ous. Then
D [u] > H'[7]. (7.14)
The equality holds only if 7;;= 7;;0r 7;; = 7; i+ Po0;;where p, is a constant.
Proof. Let 7;;= 1,;+7;;. Substituting 7;;in (7. 11), using (4.10) and collecting
terms as in (4.11) yields

HMFHh]fz-amM
JV“’ 2 ~ 48y aV
J i— 5T 0)dV

—2121 fV(},’ ei(Tij— 3T ) AV

+ 2QAP, (7.15)

where Ap is defined by (7.10) with 7, replaced by 7,;. Equations (4.12) and (4.13)
apply in the present case with S, equal to the sum of S,, S, S,, S and S{¥.
Considering the fact that 7,; satisfies conditions of the form (7.9) and (7.10), itis
found that after substitution of (4.12) and (4.13) in (7.15) that (7.15) can be

reduced to
H'[7, ,] =H [TL;] f f %fkkaij)de

S 2 5,)2dV 16
—sz%< — ¥rdyRdv. (7.16)
Theorem 10 follows from (7.16) and (7.12).

A uniqueness theorem for periodic Stokes flow can be derived from theorems
9 and 10 by the same arguments used to prove theorem 3. The result is

THEOREM 11. Uniqueness theorem for periodic flows. A periodic solution u(x)
of a periodic Stokes flow problem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2)
is unique for a given discharge Q@ and the stress 7;; i3 unique to within a uniform
pressure.

If f;is conservative so that it has a potential Q and the solid particles and liquid
drops are neutrally buoyant, theorems 9-11 can be simplified.

The condition that the suspended drops and particles be neutrally buoyant
particles is equivalent to the requirement that Q be continuous in V. Since f; is
assumed to be periodic in z,, any difference of Q at corresponding points of

S, and S is a constant, i.e. [Q),—[Qlp = AQ, (7.17)
where AQ is a constant and 4 and B are any pair of corresponding points on
S, and S;. It follows that

v v
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where u; and %, are the velocity fields in theorem 9. Proof of (7.18) follows by use
of Gauss’s theorem, (7.1), (7.2) and (7.17). Adding twice (7.18) to (7.5) yields

TurorEM 12. If the suspended liguid drops and solid particles are neutrally
buoyant and the body forces are conservative, then theorem 9 holds with (7.5) replaced
by Np . Npoos
Dul+2 Y 0049 < D[a]+2 3 o040, (7.19)

=1 =1

Similarly, theorem 10 may be replaced by

THEOREM 13. If the suspended liquid drops and solid particles are neutrally
buoyant and the body forces are conservative, then theorem 10 holds with (7.14)
replaced by . Ny )
D[u]+23 o®4® > H'[7,]+2QAQ. (7.20)

=1

The uniqueness theorem for periodic Stokes flows, theorem 11, remains un-
changed whether the suspended drops and particles are neutrally buoyant or not.

If there are no liquid drops present, or if the shape of the liquid drops is
assumed to be constant, the terms involving o® in (7.19) and (7.20) do not appear
and theorems 12 and 13 give bounds on the dissipation D[u] directly. In this case
theorem 9 can be reformulated as follows:

THEOREM 14. The solution u(x) of a periodic Stokes flow problem satisfying
(2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2) produces less dissipation than any other
periodic flow G(x) satisfying (2.1), (7.1) and (7.2) for the same discharge () provided
(i) G(x) 15 continuous and piecewise continuously differentiable; (ii) body forces are
conservative; (iil) suspended solid particles and liquid drops are neutrally buoyant
and of constant shape.

Theorem 14 can be applied to the steady laminar flow of a uniform liquid with
no suspended particles in an infinite pipe of any uniform cylindrical cross-section.
Such a flow may be considered periodic with any periodicity A, 0 < A < co. Then
theorem 14 states that the laminar flow solution of this problem has less dissipa-
tion than any spatially periodic comparison flow of the same discharge. This is a
result that was proved previously by Thomas (1942) for the case of uniform flow
in a circular pipe.

Theorem 14 is also of interest for approximate computation of the pressure drop
in a model of capillary blood flow in which the red blood cells are represented as
deformed liquid drops of constant shape spaced periodically in a uniform circular
tube.

This work was supported by the Office of Naval Research under Project
NR 062-393.

Appendix. Analyticity of «;
The equations of motion (6.7) and continuity (2.1) may be written

_oF

Vi, %%

T
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and U =0, (A2)

1
where F= /-L(p + Q). (A3)

The equations (A 1) and (A 2) are identical in form to the equations of linear
elasticity with Poisson’s ratio equal to 1 and zero body forces, as discussed by
Duffin (1956). Assuming only that the derivatives in (A 1) and (A 2) exist and
are continuous in an open domain E, Duffin (1956) proves that ¥ is harmonic,
i.e. V2F = 0 and hence F is analyticin Z. Now (A 1) may be regarded as Poisson’s
equation on u, where F ; is analytic. The differentiability theorem given by
Courant & Hilbert (1962, p. 345) for a general second-order elliptic equation then
ensures that u, is also analytic. Thus ¥ and u; possess derivatives of all orders.
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